
MPI and Hybrid Programming
Models

William Gropp
www.cs.illinois.edu/~wgropp

2

What is a Hybrid Model?

•  Combination of several parallel
programming models in the same
program
♦ May be mixed in the same source
♦ May be combinations of components or

routines, each of which is in a single parallel
programming model

•  MPI + Threads or MPI + OpenMP is the
most familiar hybrid model (that
involves MPI)
♦ There are other interesting choices for

which we should prepare

3

Why a Hybrid Model?

•  Note that in some ways MPI is already a hybrid
programming model (MPI + C; MPI + Fortran)
♦  Adding a third programming model is not a major change…

•  Also note that many applications are multilingual, built
from pieces in C, C++, Python, Matlab, …
♦  Developers use the best tool for each part of their program

•  Scale of machines to come encourage the use of
different programming models to address issues such as
♦  Declining memory per core
♦  Multiple threads/core
♦  Load balance
♦  Algorithmic issues

4

MPI and Threads

•  MPI describes parallelism between processes
(with separate address spaces)

•  Thread parallelism provides a shared-memory
model within a process

•  OpenMP and Pthreads are common models
♦  OpenMP provides convenient features for loop-level

parallelism. Threads are created and managed by
the compiler, based on user directives.

♦  Pthreads provide more complex and dynamic
approaches. Threads are created and managed
explicitly by the user.

5

Programming for Multicore

•  Almost all chips are multicore these days
•  Today’s clusters often comprise multiple CPUs per node

sharing memory, and the nodes themselves are
connected by a network

•  Common options for programming such clusters
♦  All MPI

•  Use MPI to communicate between processes both within a
node and across nodes

•  MPI implementation internally uses shared memory to
communicate within a node

♦  MPI + OpenMP (or MPI + OpenACC)
•  Use OpenMP within a node and MPI across nodes

♦  MPI + Pthreads
•  Use Pthreads within a node and MPI across nodes

•  The latter two approaches are known as “hybrid
programming”

6

Myths About the MPI + OpenMP
Hybrid Model

1.  Never works
•  Examples from FEM assembly, others show benefit

2.  Always works
•  Examples from NAS, EarthSim, others show MPI

everywhere often as fast (or faster!) as hybrid models

3.  Requires a special thread-safe MPI
•  In many cases does not; in others, requires a level

defined in MPI-2

4.  Harder to program
•  Harder than what?
•  Really the classic solution to complexity - divide problem

into separate problems
•  10000-fold coarse-grain parallelism + 100-fold fine-grain

parallelism gives 1,000,000-fold total parallelism

7

Special Note

•  Because neither 1 nor 2 are true, and 4 isn't entirely false,
it is important for applications to engineer codes for the
hybrid model. Applications must determine their:
♦  Memory bandwidth requirements
♦  Memory hierarchy requirements
♦  Load Balance

•  Don't confuse problems with getting good performance out
of OpenMP with problems with the Hybrid programming
model

•  See Using OpenMP by Barbara Chapman,
Gabriele Jost and Ruud van der Pas,
Chapters 5 and 6, for programming
OpenMP for performance
♦  See pages 207-211 where they discuss the

hybrid model

8

MPI’s Four Levels of Thread
Safety

•  MPI defines four levels of thread safety. These are in
the form of commitments the application makes to the
MPI implementation.
♦  MPI_THREAD_SINGLE: only one thread exists in the

application
♦  MPI_THREAD_FUNNELED: multithreaded, but only the

main thread makes MPI calls (the one that called MPI_Init
or MPI_Init_thread)

♦  MPI_THREAD_SERIALIZED: multithreaded, but only one
thread at a time makes MPI calls

♦  MPI_THREAD_MULTIPLE: multithreaded and any thread
can make MPI calls at any time (with some restrictions to
avoid races – see next slide)

8

9

Specifying the Level of
Thread Safety

• MPI defines an alternative to
MPI_Init
♦ MPI_Init_thread(requested, provided)

• Application indicates what level it needs;
MPI implementation returns the level it
supports

• Many (not all) builds of MPICH
exploit this runtime control
♦ If you don’t need thread safety, there

is little extra cost

10

Specification of
MPI_THREAD_MULTIPLE

•  When multiple threads make MPI calls
concurrently, the outcome will be as if the calls
executed sequentially in some (any) order

•  Blocking MPI calls will block only the calling thread
and will not prevent other threads from running or
executing MPI functions

•  It is the user's responsibility to prevent races when
threads in the same application post conflicting
MPI calls
♦  e.g., accessing an info object from one thread and

freeing it from another thread
•  User must ensure that collective operations on the

same communicator, window, or file handle are
correctly ordered among threads
♦  e.g., cannot call a broadcast on one thread and a

reduce on another thread on the same communicator

10

11

Threads and MPI in MPI-2
(and MPI-3)

•  An implementation is not required to
support levels higher than
MPI_THREAD_SINGLE; that is, an
implementation is not required to be
thread safe

•  A fully thread-safe implementation will
support MPI_THREAD_MULTIPLE

•  A program that calls MPI_Init (instead of
MPI_Init_thread) should assume that
only MPI_THREAD_SINGLE is supported

11

12

The Current Situation

•  All MPI implementations support MPI_THREAD_SINGLE
(duh).

•  They probably support MPI_THREAD_FUNNELED even if
they don’t admit it.
♦  Does require thread-safe malloc
♦  Probably OK in OpenMP programs

•  Many (but not all) implementations support
THREAD_MULTIPLE
♦  Hard to implement efficiently though (lock granularity

issue)

•  “Easy” OpenMP programs (loops parallelized with
OpenMP, communication in between loops) only need
FUNNELED
♦  So don’t need “thread-safe” MPI for many hybrid programs
♦  But watch out for Amdahl’s Law!

13

What MPI’s Thread Safety Means in
the Hybrid MPI+OpenMP Context

•  MPI_THREAD_SINGLE
♦  There is no OpenMP multithreading in the program.

•  MPI_THREAD_FUNNELED
♦  All of the MPI calls are made by the master thread.

i.e. all MPI calls are
•  Outside OpenMP parallel regions, or
•  Inside OpenMP master regions, or
•  Guarded by call to MPI_Is_thread_main MPI call.

-  (same thread that called MPI_Init_thread)

•  MPI_THREAD_SERIALIZED
#pragma omp parallel
…
#pragma omp single
{
 …MPI calls allowed here…
}

•  MPI_THREAD_MULTIPLE
♦  Any thread may make an MPI call at any time

14

Some Things to Watch for in
OpenMP

•  No standard way to manage memory affinity
♦  “First touch” (have intended “owning” thread

perform first access) provides initial static mapping
of memory

•  Next touch (move ownership to most recent thread)
could help

♦  No portable way to reassign affinity – reduces the
effectiveness of OpenMP when used to improve load
balancing.

•  Memory model can require explicit “memory
flush” operations
♦  Defaults allow race conditions
♦  Humans notoriously poor at recognizing all races

•  It only takes one mistake to create a hard-to-find bug

15

Some Things to Watch for in
MPI + OpenMP

•  No interface for apportioning resources
between MPI and OpenMP
♦  On an SMP node, how many MPI processes and how

many OpenMP Threads?
•  Note the static nature assumed by this question

♦  Note that having more threads than cores is
important for hiding latency

•  Requires very lightweight threads

•  Competition for resources
♦  Particularly memory bandwidth and network access
♦  Apportionment of network access between threads

and processes is also a problem, as we’ve already
seen.

16

Where Does the MPI + OpenMP
Hybrid Model Work Well?

• Compute-bound loops
♦ Many operations per memory load

• Fine-grain parallelism
♦ Algorithms that are latency-sensitive

• Load balancing
♦ Similar to fine-grain parallelism; ease of

• Memory bound loops

17

Compute-Bound Loops

• Loops that involve many
operations per load from memory
♦ This can happen in some kinds of

matrix assembly, for example.
♦ “Life” update partially compute bound

(all of those branches)
♦ Jacobi update not compute bound

18

Fine-Grain Parallelism

•  Algorithms that require frequent
exchanges of small amounts of data

•  E.g., in blocked preconditioners,
where fewer, larger blocks, each
managed with OpenMP, as opposed
to more, smaller, single-threaded
blocks in the all-MPI version, gives
you an algorithmic advantage (e.g.,
fewer iterations in a preconditioned
linear solution algorithm).

•  Even if memory bound

19

Load Balancing

• Where the computational load isn't
exactly the same in all threads/
processes; this can be viewed as a
variation on fine-grained access.

• More on this later (OpenMP
currently not well-suited,
unfortunately. An option is to use
Pthreads directly.)

20

Memory-Bound Loops

• Where read data is shared, so that
cache memory can be used more
efficiently.

• Example: Table lookup for
evaluating equations of state
♦ Table can be shared
♦ If table evaluated as necessary,

evaluations can be shared

21

Where is Pure MPI Better?

•  Trying to use OpenMP + MPI on very
regular, memory-bandwidth-bound
computations is likely to lose because of
the better, programmer-enforced
memory locality management in the
pure MPI version.

•  Another reason to use more than one
MPI process - if a single process (or
thread) can't saturate the interconnect -
then use multiple communicating
processes or threads.
♦ Note that threads and processes are not

equal - see next slides

22

Tests with Multiple Threads
versus Processes

22

T

T

T

T

T

T

T

T

P

P

P

P

P

P

P

P

•  Consider these two
cases:
♦  Nodes with 4 cores
♦  1 process with four

threads sends to 1 process
with four threads, each
thread sending, or

♦  4 processes, each with
one thread, sending to a
corresponding thread

•  User expectation is that
the performance is the
same

•  Results are joint work
with Rajeev Thakur
(Argonne)

23

Concurrent Bandwidth Test

Lesson: Its hard to provide full performance from threads

(Recent results on current platforms show similar
behavior)

24

Locality is Critical

•  Placement of processes and threads
is critical for performance
♦ Placement of processes impacts use of

communication links; poor placement
creates more communication

♦ Placement of threads within a process on
cores impacts both memory and
intranode performance
• Threads must bind to preserve cache
•  In multi-chip nodes, some cores closer than

others – same issue as processes

• MPI has limited, but useful, features
for placement

25

Importance of ordering processes/
threads within a multichip node

•  2x4 processes in a mesh
•  How should they be

mapped onto this single
node?

•  Round robin (by chip)?
♦  Labels are coordinates of

process in logical
computational mesh

♦  Results in 3x interchip
communication than the
natural order

♦  Same issue results if there
is 1 process with 4 threads
on each chip, or 1 process
with 8 threads on the node

core core

core core

core core

core core

0,0 2,0

0,1 2,1

1,0 3,0

1,1 3,1

26

Hybrid Model Options: Fine

•  Fine grain model:
♦ Program is single threaded except when

actively using multiple threads, e.g., for
loop processing

♦ Pro:
•  Easily added to existing MPI program

♦ Con:
•  Adds overhead in creating and/or managing

threads
•  Locality and affinity may be an issue (no

guarantees)
•  Amdahl’s Law problem – serial sections limit

speedup

27

Hybrid Model Options:
Coarse

• Coarse grain model
♦ Majority of program runs within “omp

parallel”
♦ Pro:

• Lowers overhead of using threads,
including creation, locality, and affinity

• Promotes a more parallel coding style

♦ Con:
• More complex coding, easier to introduce

race condition errors

28

Challenges for
Programming Models

•  Parallel programming models need to provide ways to
coordinate resource allocation
♦  Numbers of cores/threads
♦  Assignment (affinity) of cores/threads
♦  Intranode memory bandwidth
♦  Internode memory bandwidth

•  They must also provide clean ways to share data
♦  Consistent memory models
♦  Decide whether its best to make it easy and transparent

for the programmer (but slow) or fast but hard (or
impossible, which is often the current state)

•  Remember, parallel programming is about performance
♦  You will always get higher programmer productivity with a

single threaded code

29

Challenges for
Implementations

•  Sharing of communication infrastructure
♦  For example, the Berkeley UPC implementation

makes use of GASNET, an efficient, portable
communication layer

♦  But GASNET does not provide all of the features
required by an efficient, full MPI implementation

♦  Similarly, the communication layer used by MPI
implementations may not provide all of the features
needed by UPC (see “Problems with using MPI 1.1
and 2.0 as compilation targets for parallel language
implementations”, Dan Bonachea, Jason Duell)

•  It is possible to build such infrastuctures
♦  But current examples only address some of the

issues.
♦  Resource allocation and sharing not covered

30

Conclusions

•  Hybrid programming models exploit complementary
strengths
♦  In many cases, can replace OpenMP with OpenACC or

other accelerator programming system

•  Evolutionary Path to Hybrid Models
♦  Short term - better support for resource sharing

•  We need to experiment with specifying additional information,
e.g., through mpiexec

♦  Medium term - better support for interoperating
components

•  We need to ensure that communication infrastructures can
cooperate

•  Consider extensions to make implementations aware that they
are in a hybrid model program

♦  Long term - Generalized model, efficient sharing of
communication and computation infrastructure

